Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Nanobiotechnology ; 20(1): 314, 2022 Jul 06.
Article in English | MEDLINE | ID: covidwho-1974155

ABSTRACT

Acute respiratory distress syndrome (ARDS), caused by noncardiogenic pulmonary edema (PE), contributes significantly to Coronavirus 2019 (COVID-19)-associated morbidity and mortality. We explored the effect of transmembrane osmotic pressure (OP) gradients in PE using a fluorescence resonance energy transfer-based Intermediate filament (IF) tension optical probe. Angiotensin-II- and bradykinin-induced increases in intracellular protein nanoparticle (PN)-OP were associated with inflammasome production and cytoskeletal depolymerization. Intracellular protein nanoparticle production also resulted in cytomembrane hyperpolarization and L-VGCC-induced calcium signals, which differed from diacylglycerol-induced calcium increment via TRPC6 activation. Both pathways involve voltage-dependent cation influx and OP upregulation via SUR1-TRPM4 channels. Meanwhile, intra/extracellular PN-induced OP gradients across membranes upregulated pulmonary endothelial and alveolar barrier permeability. Attenuation of intracellular PN, calcium signals, and cation influx by drug combinations effectively relieved intracellular OP and pulmonary endothelial nonselective permeability, and improved epithelial fluid absorption and PE. Thus, PN-OP is pivotal in pulmonary edema in ARDS and COVID-19, and transmembrane OP recovery could be used to treat pulmonary edema and develop new drug targets in pulmonary injury.


Subject(s)
COVID-19 Drug Treatment , Nanoparticles , Pulmonary Edema , Respiratory Distress Syndrome , Calcium , Humans , Osmotic Pressure , Proteins , Pulmonary Edema/complications , Pulmonary Edema/drug therapy , Respiratory Distress Syndrome/drug therapy
2.
Molecules ; 26(7)2021 Mar 24.
Article in English | MEDLINE | ID: covidwho-1167670

ABSTRACT

Depression and anxiety disorders are widespread diseases, and they belong to the leading causes of disability and greatest burdens on healthcare systems worldwide. It is expected that the numbers will dramatically rise during the COVID-19 pandemic. Established medications are not sufficient to adequately treat depression and are not available for everyone. Plants from traditional medicine may be promising alternatives to treat depressive symptoms. The model organism Chaenorhabditis elegans was used to assess the stress reducing effects of methanol/dichlormethane extracts from plants used in traditional medicine. After initial screening for antioxidant activity, nine extracts were selected for in vivo testing in oxidative stress, heat stress, and osmotic stress assays. Additionally, anti-aging properties were evaluated in lifespan assay. The extracts from Acanthopanax senticosus, Campsis grandiflora, Centella asiatica, Corydalis yanhusuo, Dan Zhi, Houttuynia cordata, Psoralea corylifolia, Valeriana officinalis, and Withaniasomnifera showed antioxidant activity of more than 15 Trolox equivalents per mg extract. The extracts significantly lowered ROS in mutants, increased resistance to heat stress and osmotic stress, and the extended lifespan of the nematodes. The plant extracts tested showed promising results in increasing stress resistance in the nematode model. Further analyses are needed, in order to unravel underlying mechanisms and transfer results to humans.


Subject(s)
Antidepressive Agents/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Aging/drug effects , Aging/physiology , Animals , Antioxidants/pharmacology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Gene Knockout Techniques , Heat-Shock Response/drug effects , Longevity/drug effects , Longevity/genetics , Longevity/physiology , Mutation , Osmotic Pressure/drug effects , Oxidative Stress/drug effects , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL